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Three-magnon bound states in an S=l linear chain with 
next-nearest-neighbour interaction 
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Physim Department, Indian Institute of Ethnology, Pmai ,  Bombay-7fi, India 

Received r) July 1992, in final farm 16 September 1992 

AbslrscL ?he problem of three Spin deviations from a fully aligned slate is studied for 
the Heisenberg model with nex-nearest-neighbour interactions for the case of spin 1. 
?he method used is a slraightfonvard generalization of the equation-of-motion method 
of Fukuda and Wonis, taking a r e  of the unphysical States Ihe resulting integral 
equation is solved in one dimension and the dependence of lhe b u n d  states an the 
next-nearest-neighbour interaction discussed. Numerical calculations have also k e n  done 
for dosed chains containing up to 40 Spins. By using C N  invariance of the Hamiltonian, 
lhe dimensionality of the space is substantially reduced. Ihe results of the finite-chain 
calculation agree well with solutions obtained from Ihe equation-of-motion method. 

1. Intmduction 

The Heisenberg chain of spin-; particles has been of considerable interest in recent 
years. The ground state of the Heisenberg Hamiltonian 

1 
2 

H = - - J  si . si+* 
i 

with J > 0 is the state of completely aligned spins while the first excited state 
is the spin-wave state. Interest in the higher excited states, consisting of bound 
states of two reversed spins arose due to the observation of bound-state complexes 
of excitations in one-dimensional magnon systems [l]. Theoretically, the existence 
of bound states in the Heisenberg system was established by the pioneering work 
of Hanus [2], Fukuda and Wortis [3], and Wortis 141. Majumdar [5] investigated 
the dependence of these bound states on the strength of the next-nearest-neighbour 
interactions and had studied the first two excited states of the Hamiltonian 

Ghosh and Mukhopadhyay 161 had extended these results to higher dimensions. It 
was found that as a increases, the bound states merge into the continuum. 

Theoretical interest in the next excited state of three reversed spins has been 
rather subdued due to mathematical complexities. For the spin-; case, Bethe [7] had 
pointed out that in addition to the spin-wave solutions, bound complexes Of reversed 
spins propagate through the lattice. Bethe’s method is difficult to generalize to higher 
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dimensions and subsequent efforts have been generally confined to lower excited 
states. Majumdar [SI used Faddeev’s technique [9] to treat the three-spin deviation 
problem for the spin-; case. In this work Majumdar used the Dyson Hamiltonian 
[lo] of ideal bosonic spin waves instead of considering the spin operators themselves. 
The disadvantage of this Hamiltonian is that it does not reproduce the kinematical 
constraint of the impossibility of two spin reversals at the Same site and leads to 
unphysical bound statcs, in addition to the real ones. However these unphysical 
bound states are relatively easy to identify and the formalism leads to simple Faddeev 
equations. Himbergen [ll] succeeded in obtaining the Faddeev equations for the 
three-magnon T-matrix of the Heisenberg spin Hamiltonian. Himbergen’s method 
rigorously takes into account the kinematical constraints mentioned above, though it 
leads to considerable difficulties with the Faddeev equations. 

In this work, we consider a linear chain of spin-one Heisenberg ferromagnets with 
next-nearest-neighbour interactions. For the spin-one case there are some additional 
fcaturcs which do not exist for the spin-; case. There can now be two spin reversals 
at the same site. The bound complexes of three reversals can be of two types: (i) in 
which two spin reversals at one site are coupled with a single reversal at a different 
site, and (ii) in which the three spin reversals are all at different sites like the spin-; 
case. Unphysical states also continue to appear here except that these are caused by 
three spin reversals at the same site. 

2. One- and two-magnon subspace 

In the following, we follow Fukuda and Wortis [3] and write down the wave equations 
for the nspin deviation subspace. F$r the Hamiltonian (l), the fully aligned 
state, denoted by 10) is the ground state for J > 0 and a > 0 with an energy 
Eu = - N J S 2 ( 1  + a). The wavefunction for the one-magnon subspace is written as 

’. 
Q l  = u(i)s:lo). 

i = l  

One can explicitly write down and soive tne scnroaingcr equation ana obrain [ne 
spin-wave excitation energy as 

W ( k ) =  E -  (3) 

where a is the lattice spacing. 

wavefunction can be written as 
For the case of two spin deviations, following Fukuda and Wortis [3], the 

The wave equation can be written as 

N 
w\k2 = U ( i , j )  [ If, s: s; ]IO).  

i , j = l  
(5) 
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The cnmmutator in equation (5 )  can be explicitly calculated for the Hamiltonian (1) 
and one gets 

For spin-;, the amplitudes U ( i , i )  are unphysical and have to be defined 
artificially by extending the expression for U ( i , j )  for i # j to be valid lor i = j .  
For S = 1 however no such problem arises. 

Using the centre-of-mass coordinate system and Fourier transform, equation (6) 
becomes 

(7) 
1 

[W - E K ( ~ ) ] U K ( ~ )  = VK(k,k’) U K ( ~ ’ )  
k’EF 

where F is reciprocal lattice. E K (  k) is the energy of two free spin waves, given by 

EK(k)=4JS[1+a-cos(Iia/2)ws(ka)-acos(lia)ws(2ka)]. (8) 

The interaction V,(k,k’) is given by 

V,(k,k’) = 2J[cos(ka)(cos(Iia/2) - cos(k’a))  
+ aws(2ka) (cos( l ia )  - cos(2k’a))l. (9) 

Equation (9) has been studied and conditions for the existence of bound states 
are obtained as a function of the relative strength a. 

3. Three-magnon case 

In the three-spin deviation case, the wave equation can be simplified using the 
symmetry properties of the amplitudes as shown by Millet and Kaplan [12]. For 
convenience the Hamiltonian will be written as 

N 
H = -$ J ( i , j )  s i .  s, 

i , j = l  

where 
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The wavefunction in the three-magnon subspace is given by 

N 
q 3 =  1 u(j,IC,1)s;s:s~~o). 

j , k , l = l  

The amplitude U ( j ,  I C ,  1 )  is invariant with respect to any permutation of j ,  I C ,  and 1. 
The wave equation is 

N 

w q3 = 1 U (  j, k, 1 )  [ H ,  s: s: s: ] IO). 
j , k , l = l  

the commutator in (13) is given by 

where CP stands for cyclic permutation. 
The first term in the RHS of equation (14) describes the motion of free spin waves. 

The second term represents the interaction between WO spin waves. The third term, 
which is a three-body interaction, vanishes for the Hamiltonian (1). 

The equations determining the amplitudes can be obtained in a straightfonvard 
manner and are given by 

+ J ( I C , d [ U ( j , j , l )  + cJ (k , k , l )  - 2 U ( j ,  k,1)]. 
C P  

(15) 

EC~ZX Y+C :Si; k ~ k i i i g  h i  t k  j&ii;Viis VI (i5j SVIIIC winiiictiis a ~ c  Ilcccssdly. 
The complexity of the problem is due to the dependence of the interaction strength 
on the total momentum of the magnons, which is a constant of the motion. 
Aymptotically, the scattering states can be classified in two classes: (i) a state 
describing the motion of all free spin waves and (ii) a state describing the motion 
of a bound pair and a frcc spin wave. A bound state is defined as a state with 
energy less than the energies of scattering states. Due to the attractive nature of the 
nearest-neighbour WN) interaction, bound states will make the dominant contribution 
to the amplitude of the component in which all spin reversals lie close to each 
other. But the next-nearest-neighbour ("N) interaction partially counterbalances the 
attractive nature of the NN interaction and hence weakens these bound StatCS [SI. 
Here, the existence of these bound states is studied as a function of the relative 
strength parameter a. 

Now rewrite equation (15) as 
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where the operators Ho and V are given by 

Then equation (19) becomes 

UI(j>k,O = (w  - HlJ) - - '%[UI( I . j , k )  + U,(j,k,I) + U , ( k , I , j ) ] .  

R = i( Rj + R, + RI) 

(22) 

Now introduce the following coordinate system 

T I  = R j  - R, p ,  = RI - +( Rj + R,) (23) 

and define the Fourier transform as 

where F is the reciprocal lattice. It can be shown that by adding suitable shifts in the 
basis veetors Of E the domain of I<-, k, and ti can be reorganized such that in one 
dimension -T < I < , ~ , K  < T .  By obtaining the momentum-space transformations 
corresponding to coordinates defined in (U), it can be seen that 

o(K,ic,~)= o l + ~ l ( I ~ , - i k +  ~ t i , - k - ~ t i ) + o l ( ~ ~ ~ , - ~ k - 3 ~  4 1 k - 1  2 K ) .  (25)  

Then, equation (19) finally becomes 

2 
[ w - E ( I C , k , n ) ] o l ( l C , k , n )  = - x J ( O , i )  

i .k'  
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where 

E ( I L ? ,  k ,  K )  = 4s J ( 0 ,  i) [3 - C O S ( ; h 7  + K ) i  - 2COS(ki) COS( ;IC7 - i ~ ) i ] .  (27) 

This equation can be further simplified by using the fact that U, is invariant under 
intcrchangc of coordinates j and k.  Hence 

U (  I<, k ,  n )  = U (  I<, - I C ,  K )  

Equation (26) reduces to 

[a- E ( ~ < , ~ , K ) ] U ( I L - , ~ , K )  = c J ( 0 , i )  

I (28) 
1 
2 

For the case S = 1, thcre is a non-physical solution, which has all three spin reversals 
on the same site. The energy of this state is 6 S J (  1 + a), which is in thc continuum. 

X [ ~ ( ~ < , k , K ) + 2 U ( I i , - - k + ~ n , - k - ~ K ) ]  . 

4. Solution in one dimension 

Equation (28) is quite involved and had to be solvcd numerically. Let us define a 
new set of functions f, as 

f , ( K )  = (4/N) C[COS(ki) ws(f1i - f K ) i  - cos(k' i ) ]  

x [ i i ( I ~ , k , n ) + 2 i i ( l i , - - k +  i n , - k -  ; K ) ]  

(29) 
I;' 

1 
2 

by means of which equation (28) becomes 

With a little effort, by rearranging the domain of k', we get the final equation for fi 

cos(ki)[ms(ffi- fn ) i - cos (k ' i ) ] f , , (~ )  
w - E(I<,  k ' ,  K )  

f , ( ~ )  = ( 4 / 2 r r ) C J ( 0 , i f )  
i' 

COs(ki)[COs(;IC- - i n ) i  - cos(k' + iK)i]fi,(k') 
w - E( I<, f k l  + n, K )  

+ 2/dk '  

These integral equations arc solved numerically. This set of homogeneous equations 
far fi has a nontrivial solution only when the determinant of the coefficients of f i  
is zero. ?b determine the boundaly of the scattering region for momentum Ii, the 
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energy EKa of a bound pair with momentum lib was calculated [SI. If EKt is the 
energy of a free magnon with momentum then the minimum of EKb + EK,, such 
that Iib + h-, = K, would be the required boundary. The roots of the determinantal 
equation which lie below this region were determined numerically for different d u e s  
of IC between 0 and r and for values of a up to 1. The solutions reduce to the 
correct values for a = 0 in agreement with Millet and Kaplan [12]. 

At a = 0, the bound states were found for all li, and are strongest for Ii = 71. 

A second set of bound states is found, whose energies lie just above the first set. 
These correspond to the two types of bound states mentioned earlier. However, in 
this case determining the structure of these states is not easy. For a > 0 and IC = K 
the boundstate energy rises towards the scattering region with a and finally merges 
into the scattering region. Figure 1 shows the lowest bound-state energy (dashcd line) 
for different values of a. The boundary of the countinuum is shown by solid lines. 
The bound states disappear for IC < r also, but at higher values of a. Figure 2 
shows the phase diagram plotted for Ii versus a. The bound states do not exist in 
the shaded region. 

n . 
3 } 4 so.0 

0 n i z  T 

H , to ta l  mommlum 

Figure 1. Energies of the lowest bound stales for various values of a. Solid lines show 
lhe lwer  boundary of the %altering region. ?he lowest bound stales are shown iy 
dashed lines. 

5. Short-chain calculation 

The exact diagonalization of the Hamiltonian matrix was done for short chains 
consisting of up to 40 particles. For closed chains, using CN invariance of the 
Hamiltonian, the sizes of the matrices can be reduced considerably. Let the N- 
particle spin state be written as Iml, m 2 , .  . . , m N )  and 
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Figure 2 Phase diagram on the 11. vemus a plane. Bound States disappear in shaded 
region. 

Let 

Let U he a 'rotation' operator on V such that 

Imlrm2r . . .  1 m N )  = I m Z r m 3 r ,  .. > ml) .  

The group generated hy U is isomorphic to C N .  Then V can he decomposed into 

N-l 

K=O 
v =  fE VK 

.,..".., ITK r,c!nic~ n!! iy..z~i--t ~ ' \ E - o c ~ ~  -f l/  nn..:.,nlnnt +- s n m ~  imerlnrihlP ~"-" -. . .,7".."..,... .- ---------- ..,Anm 

representation of CN labelled by It-. Since [ H , u ]  = 0, VK is invariant under 
H also. This subspace can be obtained by operating on V with a projection Operator 

: = U  

where = exp(G!xK/N). 
The variable K corresponds to the total momentum of the three magnons. The 

dimension of V, for N = 40, is 286 whereas the dimension of V is 11440. Using 
the above procedure the Hamiltonian matrix was set up for given values of the total 
momentum I<- and relative strength parameter a. The matrix was diagonalized tO 
obtain the lowest few eigenenergies and corresponding eigenfunctions. 

It was found that the finite-chain calculations for N 2 30 agree with the numerical 
solutions of integral equation to an accuracy of three decimal places. The advantage 
of the short-chain calculation over the infinite-chain calculation is that by computing 
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the amplitudes of various compOm" Of the Wavevector, one can easily identify the 
structure of the bound states. The lowest bound states have a dominant amplitude 
corresponding to the basis state in which the three spin reversals lie on three 
neighbouring sites. A second set of bound States which appear just above these 
has two spin reversals on one site and a single reversal on a neighbouring site. The 
energies of these states are given in table 1. For each value of a, column A lists 
the lowest bound-state energy and column B gives the next lowest states. For a = 0, 
the values reported by Millet and Kaplan as the energy of three bound states are 
the energies of a bound pair and z free magnon state. The three bound states Lie 
below these values. For K = r, the eigenvalues of the bound states shift towards 
the continuum as a increases. For I< < r, the merging occurs at higher values of a. 

6. Conclusions 

In this report we have investigated the bound-state complexes of three magnons in an 
S = 1 linear chain, which is described by nearest-neighbour (") and next-nearest- 
neighbour ("N) interactions. The problem was attempted through two methods: 
(i) by obtaining and numerically solving an integral equation and (ii) by directly 
diagonalizing finite chains. The results of the two methods agree reasonably well. 
The integral-equation approach is a straightforward generalization of the treatment 
by Millet and Kaplan and the results reduce to theirs in the limit a = 0. 

It was found that bound states vanish as the strength of the N" interaction 
increases. This behaviour is the same as for S = i, the two-magnon case discussed 
by Majumdar. A new feature in the S = 1 case is the existence of hvo types of bound 
states. The bound state in which three magnons are on three neighbouring sites has 
lower energy than the one in which a pair of magnons is on one site and a single 
magnon on a neighbouring site. 
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