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Abstracl. The problem of three spin deviations from a fully aligned swate is studied for
the Heisenberg model with next-nearest-neighbour interactions for the case of spin 1.
The method used is a straightforward generalization of the equation-of-motion method
of Fukuda and Wortis, taking care of the unphysical states. The resulting integral
equation is solved in one dimension and the dependence of the bound states on the
next-nearest-neighbour interaction discussed. Numerical calculations have also been done
for closed chains containing up to 40 spins. By using C ) invariance of the Hamiltonian,
the dimensionality of the space is substantially reduced. The results of the finite-chain
calculation agree well with solutions obtained from the equation-of-motion method.

1. Introduction

The Heisenberg chain of spin-% particles has been of considerable interest in recent
years. The ground state of the Heisenberg Hamiltonian

1
H:-iJZ:S,--Si+1

with J > 0 is the state of completely aligned spins while the first excited state
is the spin-wave state. Interest in the higher excited states, consisting of bound
states of two reversed spins arose due to the observation of bound-state complexes
of excitations in one-dimensional magnon systems [1]. Theoretically, the existence
of bound states in the Heisenberg system was established by the pioneering work
of Hanus ]2]), Fukuda and Wortis [3], an@ Wortis [4). Majumdar [5] investigated
the dependence of these bound states on the strength of the next-nearest-neighbour
interactions and had studied the first two excited states of the Hamiltonian

H=-3J) 8 Syy~1Ja) S S 1)

Ghosh and Mukhopadhyay [6] had extended these results to higher dimensions. It
was found that as o increases, the bound states merge into the continuum.
Theoretical interest in the next excited state of three reversed spins has been
rather subdued due to mathematical complexities. For the spin-% case, Bethe [7] had
pointed out that in addition to the spin-wave solutions, bound complexes of reversed
spins propagate through the lattice. Bethe’s method is difficult to generalize to higher
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dimensions and subsequent efforts have been generally confined to lower excited
states. Majumdar [8] used Faddeev's technique [9] to treat the three-spin deviation
problem for the spin-% case. In this work Majumdar used the Dyson Hamiltonian
[10] of ideal bosonic spin waves instead of considering the spin operators themselves.
The disadvantage of this Hamiltonian is that it does not reproduce the kinematical
constraint of the impossibility of two spin reversals at the same site and leads to
unphysical bound statcs, in addition to the real ones. However these unphysical
bound states are relatively easy to identify and the formalism leads to simple Faddeev
equations. Himbergen [11} succeeded in obtaining the Faddeev equations for the
three-magnon T-matrix of the Heisenberg spin Hamiltonian. Himbergen’s method
rigorously takes into account the kinematical constraints mentioned above, though it
leads to considerable difficulties with the Faddeev equations.

In this work, we consider a linear chain of spin-one Heisenberg ferromagnets with
next-nearest-neighbour interactions. For the spin-one case there ate some additional
features which do not exist for the spin-} case. There can now be wo spin reversals
at the same site. The bound complexes of three reversals can be of two types: (i) in
which two spin reversals at one site are coupled with a single reversal at a different
sitc, and (i) in which the threc spin reversals are all at different sites like the spin-1
case. Unphysical states also continue to appear here except that these are causcd by
three spin reversals at the same site.

2, One- and two-magnon subspace

In the following, we follow Fukuda and Wortis [3] and write down the wave equations
for the nspin deviation subspace. For the Hamiltonian (1), the fully aligned
state, denoted by |0) is the ground state for J > 0 and o > 0 with an cnergy
Ey, = —NJS5%1+ ). The wavefunction for the one-magnon subspace is written as

N
¥, =Y U()SH0). (2)

i=1
One can explicitly write down and solve the Schrodinger cquation and odtain the
spin-wave excitation energy as

w(k) = E - E; = 25J(1+4 a) — 25J cos(ka) — 25J arcos(2ka) (3)

where a is the lattice spacing.
For the case of two spin deviations, following Fukuda and Wortis [3], the
wavefunction can be written as

N
V,= > UG, 5)SHSHO). )
ii=1

The wave equation can be written as

N
wl,= Y U(i,5)[ H, St 57 ]i0). (5)

i,7=1
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The commutator in equation (5) can be explicitly calculated for the Hamiltonian (1)
and one gets

[w~4IS(1+ )]UE,5) = -JS[ Y {UGi+4,5) + UG, 5+ D}

=41
+a Y {UG+2045) + UG, +20}]
f==+1
+ 150 6,,,UG, ) + UG, 5) —2U(, )}
f=+1
+%‘gléi.jnz{v(iai)-i-U(j,j)—ZU(z',j)}. (6)

For spin-1, the amplitudes U(i,i) are unphysical and have to be defined

artificially by extending the expression for U(i,7) for ¢ # j to be valid for i = ;.
For § =1 however no such problem arises.

Using the centre-of-mass coordinate system and Fourier transform, equation (6)
becomes

[ = ExelB)Use(k) = 5 3 Vielh ) Uge () ™
k‘cF

where F is reciprocal lattice. E (k) is the energy of two free spin waves, given by
Ep(k)=4JS[1+ a —cos( Ka/2)cos(ka) — acos( K a) cos(2ka)]. (8)
The interaction Vi (k, k') is given by
Vi (k. k') = 2J [cos(ka)(cos{ Ka/2) — cos{k'a))

+ acos(2ka){cos( /K a) — cos(2k’a))]. )

Equation (9) has been studied and conditions for the existence of bound states
are obtained as a function of the relative strength o.

3. Three-magnon case

In the three-spin deviation case, the wave equation can be simplified using the
symmetry propertics of the amplitudes as shown by Millet and Kaplan [12]. For
convenience the Hamiltonian will be written as

N
H=-1% J(i.))§;"S; (10)

t,J=1
where
J(i,7)=1¢ ad fi=j+2 (11)

{ J fi=37%1
0 otherwise.
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The wavefunction in the three-magnon subspace is given by

N
Wy = Y U5,k 1)S} St ST10). (12)
j.k,i=1

The amplitude U(j, k,!) is invariant with respect to any permutation of j, k, and 1.
The wave equation is

N
wly= > U,k D[H,S} SESH]0). (13)
IRRE]]

the commutator in (13) is given by

[H, St SFSF] =Z{s; SEUH,SF) + SH[H, S, sr]}
cP
+[[[H,s}}.8%1.57] (14)

where CP stands for cyclic permutation.

The first term in the RHS of equation (14) describes the motion of free spin waves.
The second term represents the interaction between two spin waves. The third term,
which is a three-body interaction, vanishes for the Hamiltonian (1).

The equations determining the amplitudes can be obtained in a straightforward
manner and are given by

wU(G k1) =28 Y J(L,)[UG, k0 - U4, k, 1))
CP,.:

+ 3 Ik, DUG, 5,0 + Uk, k1) = 2U (G, %, D).
cP

(15)

Before we stait iooking for ihié sotuniois of {15) sumc wonunenis are necessary.
The complexity of the problem is due to the dependence of the interaction strength
on the total momentum of the magnons, which is a constant of the motion.
Asymptotically, the scattering states can be classificd in two classes: (i) a state
describing the motion of all free spin waves and (ii) a state describing the motion
of a bound pair and a frcc spin wave. A bound statc is defined as a state with
energy less than the energies of scattering states. Due to the attractive nature of the
nearest-neighbour (NN) interaction, bound states will make the dominant contribution
to the amplitude of the component in which all spin rteversals lic close to cach
other. But the next-nearcst-neighbour (NNNj interaction partially counterbalances the
attractive nature of the NN interaction and hence weakens these bound states [5].
Here, the existence of these bound states is studied as a function of the relative
strength parameter .

Now rewrite equation (15) as

wlU(j,k,0) = [Hy+ Vi + Vi + VUG, k1) (16)
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where the operators H;; and V are given by

HoUGi k1) =28 3 J(LD[UG, kD = UG, k, )] (17
CP,i
VUG, k1) = IO, ) [UG, 5,0 + Uk, k, ) = 20 (G, kD] (18)

Here the V; represent the effect of the pairwise interaction. Define a new function
U, vy

U4, k1) = (w = Hy) T'WVU (G, k. 1) (19)

These new functions are not invariant under permutations of the arguments, but
transform as

Ui(d, ke, 1) = Uyl 4, k) Ui(3,k, 1) = Uk, 1, 7). (20)
Also
U(j. ke, ) = Uy(4,5, k) + U; (1, §, k) + U (3,5, k) a1
= UL, j, k) + UG, k, 1) + Uik, L ).
Then equation (19) becomes
U3, k. 1) = (w— H) "'V UL, 5, k) + Uy(4, k. 1) + Uy(k, 1, 5] (22)
Now introduce the following coordinate system
R=1R;+R,+R) rn=R; - R P =R - 3(R; + Ry) (23)

and define the Fourier transform as

1 e I
U(R,m,p0) = 73 > expli( KR+ kry+ wp)]U(K, kyr)  (24)
K., k,neF

where F is the reciprocal lattice. It can be shown that by adding suitable shifts in the
basis vectors of F the domain of K, k, and x can be reorganized such that in one
dimension —n £ K,k,x € w. By obtaining the momentum-space transformations
corresponding to coordinates defined in (23), it can be seen that

UK, kk)y=U, 4 U(K, -3k + 3x,—k— 1)+ UK, -1k — 3,k - 1x). (25)

Then, equation (19) finally becomes

- - 2 .
lw— E(K, k,x))0, (K, k,&) = —Nzk J(0,7)
x [2cos(ki) cos(1K - k)i — 2cos(k — &)U (K &, k)
+ UK, -Lk+3n,~k - 1n)+ O(K, -3k - 3r,k~ 3r)]  (26)
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where

E(K,k,x) =48 " J(0,i)[3 — cos(} K + k)i — 2cos(ki) cos( L K - 18)i. (27

This equation can be further simplified by using the fact that U; is invariant under
interchange of coordinates 3 and k. Hence

UK, k,g)=U(K,—k,x)
Equation (26) reduces to

[w— E(K, k&) U(K, ky k) =Y J(0,) .

X {“‘2;{7 Y leos(ki)cos(L K — Jr)i ~ 2cos(k'1)]

k!

X [U(I(,k,n)+26’(Ix’,—%—k+%n,—k—%n)]}. (28)

For the case S = 1, there i a non-physical solution, which has all three spin reversals
on the same site. The energy of this state is 65.J(1 + «)}, which is in the continuum.

4. Solution in one dimension

Equation (28) is quite involved and had to be solved numerically. Let us define a
new sct of functions f; as

fi(r) = (4/N) " [cos(ki) cos(} K — 1r)i — cos(k'1)]
kl

(2%
x [U(K, k, k) +20(K, -%k + 3k, -k~ 1x)]
by means of which equation (28) becomes
e J(0,1) fi(x)
= —_— 30
UK, k) Zw—E(K,k,n) (30)

i
With a little effort, by rearranging the domain of &', we get the final equation for f;

1ilr) = (4/27) 3 I (0, z"){ / ayws(’“*’)[“’s(i e ?2?,’};,1‘3“’“"”“(")

,cos(ki)[cos{ LK — 1k)i — cos(k' + %m)i]f,.,(k')} -
+2fdk w— E(K, 1k + x,K) ) S

These integral equations arc solved numerically. This set of homogeneous equations
for f; has a nontrivial solution only when the determinant of the coefficients of f;
i8 zero. To determine the boundary of the scattering region for momentum 7, the
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energy Ey, of a bound pair with momentum K was calculated [5]. If E is the
energy of a free magnon with momentum K, then the minimum of Eg, + E,, such
that K, + K = K, would be the required boundary. The roots of the determinantal
equation which lie below this region were determined numerically for different values
of K between 0 and v and for values of o up to 1. The solutions reduce to the
correct values for o = 0 in agreement with Millet and Kaplan [12].

At o = (, the bound states were found for alt &', and are strongest for K = =.
A second set of bound states is found, whose energics lie just above the first set.
These correspond to the two types of bound states mentioned earlier. However, in
this case determining the structure of these states is not easy. Fora > 0and K =«
the bound-state energy rises towards the scattering region with o and finally merges
into the scattering region. Figure 1 shows the lowest bound-state energy {dashed line)
for different values of . The boundary of the countinuum is shown by solid lines.
The bound states disappear for K < = also, but at higher values of o. Figure 2
shows the phase diagram plotted for I versus o. The bound states do not exist in
the shaded region.

wiT

= 1
o} wie T
K, total momentum
Figure 1. Energies of the lowest bound states for various values of a. Solid lines show

the lower boundary of the scattering region. The lowest bound states are shown by
dashed lines.

5. Short-chain calculation

The exact diagonalization of the Hamiltonian matrix was done for short chains
consisting of up to 40 particles. For closed chains, using Cp, invariance of the
Hamiltonian, the sizes of the matrices can be reduced considerably. Let the N-
particle spin state be written as |m,,m,,...,mp) and

S, lmy,my,. .. mpy)
N N

= Esz(jﬂml,mz,...,mN) = (ij)im,,m,_,...,mN).

=1 i=1
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i
i %)-O 055 0

Figure 2. Phase diagram on the K versus o plane. Bound states disappear in shaded
region.

V= span{|m1,m2,---,mN)|(N - imi) = 3}

j=1
Let o be a ‘rotation’ operator on V' such that
olmy,my,...,my) =|m,, My, ..., M)

The group generated by o is isomorphic to C,. Then V' can be decomposed into

wrhara 1/ rantaine all invariant cuhenaras Af 1/ anuivalant tn enme  irreducihle
wasie v WOMIGING Qo MVAlGl GUMOCPUtoh Lo v SHUIVAASHL W Suean Lot mLaiRl

representation of Cp labelled by K. Since [H,o] = 0, Vi is invariant under
H also. This subspace can be obtained by operating on V with a projection operator

N-1

Py = (exo)
i=0

where €, = exp(27 K /N).

The variable K corresponds to the total momentum of the three magnons. The
dimension of V, for N = 40, is 286 whereas the dimension of V' is 11440. Using
the above procedure the Hamiltonian matrix was set up for given values of the total
momentum K and relative strength parameter o The matrix was diagonalized to
obtain the lowest few eigenenergies and corresponding eigenfunctions.

It was found that the finite-chain calculations for N > 30 agree with the numerical
solutions of integral equation to an accuracy of three decimal places. The advamgge
of the short-chain calculation over the infinite-chain calculation is that by computing



9659

1 linear chain

Magnon bound states in S

630'v 000% LYy 000t 6£0'7 000t 076t 619'¢ PSTE 9z0'e 9eeT Z8tT L
€60y €607 oy sS0y LI0Y 68 vILE SEee PLOE £EL'T 69¢°7 01T o1/ 46
LSTY oy (B84 36t 6rLE Lor'e eo1e B9 9rsT 91eT 0T61 €501 o1/ x8
90y 6bLE P9S’E 68Tt 090t ¥Z8e £55°T 48 W4 woe 881 [4ANE o'l o1/ 1L
LrI'e 8967 PILT 165T Irte £1Z2T 86! el £ES] g5l LTAN! 0L0'1 01/ 29
LT gB1Z L7077 210 Lt 6191 LIA LA 74N 501 ¥is0 L9LO o1/ %6
1651 L'l +8E’] 8LT] LLTT 980°1 0L6°0 £68°0 £9L°0 00L0 955} L050 o1/ xy
0560 1+8°0 9780 0EL0 10L0 61970 9LeD 050 1§v°0 960 9ze0 £8Z0 o1/x¢
69570 61%0 v6¥’0 £98°0 610 80t0 £r0 500 W0 Lel'd €610 %10 oi/x
6820 SPIQ 1570 9Z10 zizo Lo1o PLI'D £80°0 %10 8900 2600 6+0°0 or/x
1510 0000~ I£1°0 0000— 1110 0000 160°0 0000 1L070 0000 0500 0000— 0
q v g v a v | v g v 2] v
sg=2v yo=wn tp=r0 to=ro To=%o 0o=2o M

‘0 JO SIN|EA JUATIPIP JO} S1RIS 155mO} 1X5U Syl PUB 3eX 13m0 @ jo sadroug T dlquL



9660 C Kadolkar et al

the amplitudes of various components of the wavevector, one can easily identify the
structure of the bound states. The lowest bound states have a dominant amplitude
corresponding to the basis state in which the three spin reversals lic on three
neighbouring sites. A second set of bound states which appear just above these
has two spin reversals on one site and a single reversal on a neighbouring site. The
energies of these states are given in table 1. For each value of «, column A lists
the lowest bound-state energy and column B gives the next lowest states. For o = 0,
the values reported by Millet and Kaplan as the energy of three bound states are
the energies of a bound pair and 2 frce magnon state. The three bound states lie
below these values. For K = =, the eigenvalues of the bound states shift towards
the continuum as «a increases. For K < w, the merging occurs at higher values of a.

6. Conclusions

In this report we have investigated the bound-state complexes of three magnons in an
S =1 linear chain, which is described by nearest-neighbour (NN) and next-nearest-
neighbour (NNN) interactions. The problem was attempted through two methods:
(i) by obtaining and numecrically solving an integral equation and (i) by directly
diagonalizing finite chains. The results of the two methods agree reasonably well.
The integral-equation approach is a straightforward generalization of the treatment
by Millet and Kaplan and the results reduce to theirs in the limit o = 0.

It was found that bound states vanish as the strength of the NNN interaction
increases. This behaviour is the same as for 5 = %, the two-magnon case discussed
by Majumdar. A new feature in the § = 1 case is the existence of two types of bound
states. The bound state in which three magnons are on three neighbouring sites has
lower energy than the one in which a pair of magnons is on one site and a single
magnon on a neighbouring site.
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